Analisi della struttura dei costi degli Operatori del Sistema di Distribuzione

Politecnico di Torino, DIGEP^a

^aCorso Duca degli Abruzzi, 24, 10129 Torino TO

Nota Metodologica

20/08/2025

1. Introduzione

Il Politecnico di Torino, in continuità con la passata collaborazione, ha ricevuto l'incarico da parte dell'Autorità di Regolazione per Energia e Ambiente (ARERA) di effettuare un'analisi dei costi delle imprese di distribuzione elettrica di piccole dimensioni. Tali analisi si sono basate sui dati forniti da ARERA per il periodo 2016-2022. Il presente documento ha lo scopo di fornire una nota metodologica che possa agevolare la comprensione delle tecniche econometriche utilizzate, nonchè l'interpretazione dei risultati derivanti dalla loro applicazione. Nello specifico, a partire dalla letteratura esistente, vengono illustrate le diverse metodologie impiegate per la stima delle funzioni di costo di capitale e operativo. A complemento, vengono anche fornite le definizioni per il calcolo di economie di scala ed economie di scala spaziali.

2. La stima delle funzioni di costo

La stima econometrica delle funzioni di costo rappresenta uno strumento fondamentale per il regolatore nella definizione delle tariffe nel settore della distribuzione elettrica. La letteratura riconosce alcuni metodi tra cui la stima del costo medio e l'Analisi della Frontiera Stocastica (Stochastic Frontier Analysis, SFA).

Il metodo della stima della funzione di costo medio restituisce un comportamento "medio" del settore stimato via OLS (i.e., quadrati minimi ordinari), assumendo un termine di errore normalmente distribuito. Questo metodo, largamente impiegato in letteratura (vedi Christensen and Greene (1976) e Greene et al. (2008)), permette di analizzare l'andamento del settore considerato e in particolare di valutarne alcune caratteristiche tra cui la presenza di economie di scala e di densità.

Come illustrato dalla letteratura (Meeusen and van Den Broeck, 1977); (Aigner and Chu, 1968), la SFA consente di stimare la frontiera efficiente dei costi – cioè il livello minimo teorico di spesa dato l'output, i prezzi dei fattori e le condizioni operative – ponendo ciascuna impresa

a confronto con quella più efficiente nel campione. La SFA scompone il termine di errore in due componenti: una inefficienza tecnica non negativa specifica all'impresa e un errore casuale simmetrico. Questa specificazione consente di catturare la distanza dell'impresa dalla frontiera efficiente e, nei modelli a dati panel, di osservare l'evoluzione dell'efficienza nel tempo. I modelli SFA sono particolarmente adatti in ambito regolatorio per la loro flessibilità nell'includere variabili di controllo relative all'ambiente operativo, come la densità della rete, il numero di utenti, o fattori climatici.

A partire dagli anni Ottanta, numerosi studi hanno utilizzato questi strumenti per valutare l'impatto delle riforme del settore elettrico e analizzare l'eterogeneità delle prestazioni. Farsi and Filippini (2004), ad esempio, analizzano 59 imprese svizzere nel periodo 1988-1996, impiegando una funzione di costo di tipo Cobb-Douglas normalizzata rispetto al prezzo dell'energia acquistata. Gli stessi autori, in Farsi et al. (2006), aggiornano l'analisi incorporando eterogeneità non osservate tra imprese tramite modelli più sofisticati, come quelli a effetti casuali e tecniche di massima verosimiglianza.

Anche altri contributi internazionali adottano metodi parametrici per esplorare questioni regolatorie, economiche e ambientali. Ad esempio, Kopsakangas-Savolainen and Svento (2008) analizzano 76 imprese finlandesi e mostrano che la scelta del modello influisce significativamente sulla
distribuzione dei punteggi di efficienza. Galán and Pollitt (2014), nel contesto colombiano, evidenziano il fenomeno del "catch-up" tra imprese rurali e urbane. Llorca et al. (2016) mettono in luce
l'importanza delle condizioni climatiche e della stabilità della domanda per l'efficienza delle imprese statunitensi, mentre Anaya and Pollitt (2017) suggeriscono l'inclusione esplicita di variabili
ambientali per evitare distorsioni nei confronti tra imprese operanti in contesti geografici differenti.
Nel contesto italiano, Fraquelli et al. (2005) applicano la SFA a 25 imprese, rilevando risparmi di
costo in presenza di integrazione verticale e rendimenti di scala crescenti per le imprese più grandi.

Tali risultati suggeriscono che l'utilizzo di metodi parametrici, congiuntamente a dati panel

e a un'accurata selezione di variabili di input, output e contesto ambientale, rappresentano una soluzione robusta per supportare decisioni regolatorie informate e differenziate in base alle caratteristiche strutturali dei diversi operatori.

In particolare, con l'interesse di valutare la struttura dei costi delle imprese distributrici di piccole dimensioni, alla luce della letteratura sopra menzionata e dei dati messi a disposizione dall'Autorità, il Politecnico di Torino ha svolto un'attività di analisi di costo medio, suddiviso tra operativo (Opex) e di capitale (Capex), tramite la stima delle seguenti funzioni di tipo Cobb-Douglas:

$$ln(\frac{C_{unit}^{opex}}{p_L}) = const^{op} + \beta_1^{op}ln\frac{p_A}{p_L} + \alpha_1^{op}lnEnergia + \alpha_2^{op}lnDensita + \epsilon_i$$

$$ln(C_{unit}^{capex}) = const^{cap} + \beta_1^{cap}lnP_K + \alpha_1^{cap}lnEnergia + \alpha_2^{cap}lnDensita + \alpha_3^{cap}Vetusta + \epsilon_i$$

dove C è il costo unitario (Opex o Capex), Energia indica l'energia distribuita (variabile di output, in kWh), e PL, PK e PA sono i prezzi dei fattori (rispettivamente lavoro, capitale e altri fattori, con il primo scelto come numerario per correggere le stime da effetti inflazionistici). Per le stime Capex si è ritenuto di inserire anche la variabile di $Vetustà^1$ per tenere in considerazione l'impatto dell'età media degli investimenti. Il segno atteso delle variabili di output e del rapporto fra i prezzi è positivo: ceteris paribus, è ragionevole pensare che un aumento dei volumi di energia distribuita o un aumento del prezzo dei fattori provochi un aumento del costo medio di un'impresa di distribuzione. Fra le variabili che caratterizzano la rete e/o ambientali (ossia, fuori dal controllo

¹Tale variabile è definita come rapporto tra immobilizzazione nette successive al 2007 e totale delle immobilizzazioni nette, con riferimento al perimetro MT/BT, così come calcolate per la determinazione delle tariffe di riferimento. Per robustezza, l'indice è stato aggiornato usando come data limite il 2015 - primo anno disponibile al di fuori del campione di riferimento 2016-2022 - confermando la relazione positiva significativa.

dell'impresa), sono state altresì incluse: la densità dei consumatori, definita come il rapporto fra numero di punti di riconsegna e km di rete (*Densità*). Tutte le specificazioni includono anche delle dummy di anno per controllare per altri potenziali effetti fissi. Poiché il panel di dati fornito da ARERA non è bilanciato (ossia, per molte imprese non è disponibile il dato relativamente a tutti gli anni del periodo considerato), sono state realizzate sia stime panel che pooled. Proprio a fronte della bassa numerosità del campione e al suo sbilanciamento, sebbene le stime pooled non considerino fattori fissi specifici per la singola impresa, esse sono da considerarsi più affidabili.

3. Analisi delle economie di scala e densità

Attraverso lo studio delle funzioni di costo, è anche possibile derivare utili indicazioni circa l'esistenza o meno di economie di scala e di densità nell'erogazione del servizio di distribuzione elettrica. Per ottenere tali informazioni, stimiamo una funzione di costo totale che consideri le variabili esplicative per entrambi gli Opex e i Capex come proposte in precedenza, avente la seguente forma:

$$ln(C_{it}/PL_{it}) = \beta_0 + \beta_K lnEnergia + \beta_K (lnPK_{it}/PL_{it}) + \beta_L (lnPA_{it}/PL_{it}) + \gamma_{CD} lnDensita + \delta_v Vetusta_{it} + \epsilon_i$$

dove C è il costo totale, Energia indica i volumi distribuiti (kWh), e PL, PA, PK indicano rispettivamente il prezzo del lavoro, altri fattori e del capitale. Il prezzo del lavoro è inoltre usato come numerario per normalizzare le variabili. Le altre variabili di controllo caratterizzano la rete: Densita, densità definita come rapporto tra punti di riconsegna e chilometri di rete, Vetusta proxy per la tipologia di investimenti in essere. Il modello di regressione è nuovamente un pooled OLS con errore robusto e effetti di anno per controllare i trend temporali.

Dai coefficienti stimati si possono ottenere indicazioni circa la presenza di Economie di Scala (ES). Secondo la teoria più recente, il concetto teorico di economie di scala si riferisce alla re-

lazione tra l'andamento dei costi totali e l'output al variare di quest'ultimo mantenendo costante l'estensione e/o la configurazione spaziale della rete. Dal punto di vista di policy, le economie di scala sono rilevanti per valutare se un'impresa operante in una certa area geografica può migliorare la propria efficienza aumentando esclusivamente – a parità di rete - la scala di produzione. Le economie di scala sono misurate dal rapporto: $ES = 1/\beta_Y$, cioè l'inverso del coefficiente stimato del logaritmo naturale dell'output utilizzato (i.e. volumi riconsegnati). Le economie di densità (ED) si ottengono come risultato del rapporto: $1/(\beta_Y + \gamma_{CD})$. Un rapporto pari a 1 indica rendimenti di scala costanti (assenza di economie di scala), mentre rapporti maggiori di 1 segnalano la presenza di economie di scala (o di densità). Infine, per ciascuno dei due rapporti è possibile, con un test di significatività statistica², sottoporre a verifica l'ipotesi che siano diversi da 1, e che quindi si possa rifiutare l'ipotesi di rendimenti di scala costanti, a favore di quella di rendimenti crescenti (o decrescenti). La Tabella 1 mostra il calcolo di economie di scala successivo alla stima del modello di costo sul campione di imprese di distribuzione di energia elettrica considerato. I test effettuati mostrano la presenza di economie di scala e di consumer density, confermando i risultati della precedente analisi anche per i dati del periodo regolatorio 2016-2022.

Modello	Economie di Scala $ES = 1/\beta_1$	Economie di Consumer Density $ED = 1/(\beta_1 + \gamma_{CD})$
OLS pooled	1.116***	1.408***

Table 1: Economie di Scala ed Economie di Consumer Density

²In particolare, è stato eseguito un Wald test per verificare restrizioni non lineari.

References

- Aigner, Dennis J and Shih-fan Chu (1968) "On estimating the industry production function," American Economic Review, 826–839.
- Anaya, Karim L and Michael G Pollitt (2017) "Going smarter in the connection of distributed generation," *Energy Policy*, 105, 608–617.
- Christensen, Laurits R and William H Greene (1976) "Economies of scale in US electric power generation," *Journal of political Economy*, 84 (4, Part 1), 655–676.
- Farsi, Mehdi and Massimo Filippini (2004) "Regulation and measuring cost-efficiency with panel data models: Application to electricity distribution utilities," *Review of Industrial Organization*, 25, 1–19.
- Farsi, Mehdi, Massimo Filippini, and William Greene (2006) "Application of panel data models in benchmarking analysis of the electricity distribution sector," *Annals of Public and Cooperative Economics*, 77 (3), 271–290.
- Fraquelli, Giovanni, Massimiliano Piacenza, and Davide Vannoni (2005) "Cost savings from generation and distribution with an application to Italian electric utilities," *Journal of Regulatory Economics*, 28, 289–308.
- Galán, Jorge E and Michael G Pollitt (2014) "Inefficiency persistence and heterogeneity in Colombian electricity utilities," *Energy Economics*, 46, 31–44.
- Greene, William H et al. (2008) "The econometric approach to efficiency analysis," The measurement of productive efficiency and productivity growth, 1 (1), 92–250.
- Kopsakangas-Savolainen, Maria and Rauli Svento (2008) "Estimation of cost-effectiveness of the Finnish electricity distribution utilities," *Energy Economics*, 30 (2), 212–229.

Llorca, Manuel, Luis Orea, and Michael G Pollitt (2016) "Efficiency and environmental factors in the US electricity transmission industry," *Energy Economics*, 55, 234–246.

Meeusen, Wim and Julien van Den Broeck (1977) "Efficiency estimation from Cobb-Douglas production functions with composed error," *International Economic Review*, 435–444.